Quantum Computation Concepts

Development of concepts for realizing scalable quantum computers and their application.

Contributions to QuantumFrontiers

  • Using the results of QuantumFrontiers Topical Groups to develop new quantum computing concepts
  • Basic research on scalable quantum computers which stimulates a wide range of new applications and future spin-offs
  • Identification of quantum computer tasks, which are of significant scientific interest and would enhance basic understanding of physics, chemistry, or material science

Collaborative Innovation

  • Computing for Quantum:  Developing Scalable Methods for Controlling and Utilizing Quantum Technologies for Metrology and (S. Fekete/TUBS, W. Nejdl/LUH, T. Osborne/LUH, R. Raußendorf/LUH)
  • Quantum for Computing:  Measuring the performance of quantum algorithm for achieving scalable and practical quantum advantage (S. Fekete/TUBS, W. Nejdl/LUH, T. Osborne/LUH, R. Raußendorf/LUH)
  • Quantum Machine Learning: Reinforcement learning for the automation and discovery of quantum experiments (S. Fekete/TUBS, W. Nejdl/LUH, T. Osborne/LUH, R. Raußendorf/LUH)
  • Optical quantum computation scaling technologies, that involve frequency conversion and entanglement of remote stationary qubits via optical qubits through fiber links over possibly long distances. This especially involves compiler research with the additional penalty accrued for valuable remote entangling procedures. (C. Osplekaus,  LUH)
  • Defining a roadmap towards scalable fault-tolerant quantum computers (L. Krinner PTB, D. Borcherding, LUH)

Scientific Output

  • Publications
    Tan EYZ, Sekatski P, Bancal JD, Schwonnek R, Renner R, Sangouard N et al. Improved DIQKD protocols with finite-size analysis. Quantum. 2022 Dec 22;6. doi: 10.22331/Q-2022-12-22-880
    Zhang W, van Leent T, Redeker K, Garthoff R, Schwonnek R, Fertig F et al. A device-independent quantum key distribution system for distant users. NATURE. 2022 Jul 28;607(7920):687-691. Epub 2022 Jul 27. doi: 10.48550/arXiv.2110.00575, 10.1038/s41586-022-04891-y
    Dubielzig T, Halama S, Hahn H, Zarantonello G, Niemann M, Bautista-Salvador A et al. Ultra-low-vibration closed-cycle cryogenic surface-electrode ion trap apparatus. Review of scientific instruments. 2021 Apr 13;92(4):043201. doi: 10.1063/5.0024423
    Gnezdilov V, Kurnosov V, Pashkevich Y, Bera AK, Islam ATMN, Lake B et al. Non-Abelian statistics in light-scattering processes across interacting Haldane chains. Physical Review B. 2021 Oct 11;104(16):165118. Epub 2021 Oct 11. doi: 10.1103/physrevb.104.165118
    Madsen KA, Brouwer PW, Recher P, Silvestrov PG. Interference effects induced by a precessing easy-plane magnet coupled to a helical edge state. Physical Review B. 2021 Mar 24;103(11):115142. doi: 10.1103/PhysRevB.103.115142
    Beer K, Bondarenko D, Farrelly T, Osborne TJ, Salzmann R, Scheiermann D et al. Training deep quantum neural networks. Nature Communications. 2020 Feb 10;11(1):808. 808. doi: 10.1038/s41467-020-14454-2, 10.15488/9906
    Bridgeman JC, Hahn A, Osborne TJ, Wolf R. Gauging defects in quantum spin systems: A case study. Physical Review B. 2020 Apr 27;101(13):134111. doi: 10.1103/PhysRevB.101.134111
    Chabuda K, Dziarmaga J, Osborne TJ, Demkowicz-Dobrzański R. Tensor-network approach for quantum metrology in many-body quantum systems. Nature Communications. 2020 Jan 14;11(1):250. 250. doi: 10.1038/s41467-019-13735-9, 10.15488/10595
    Decker KSC, Kennes DM, Eisert J, Karrasch C. Entanglement and spectra in topological many-body localized phases. Physical Review B. 2020 Jan 24;101(1):014208. doi: 10.1103/PhysRevB.101.014208
    Park S, Sim HS, Recher P. Electron-Tunneling-Assisted Non-Abelian Braiding of Rotating Majorana Bound States. Physical review letters. 2020 Oct 28;125(18):187702. doi: 10.1103/PhysRevLett.125.187702
    Schuray A, Frombach D, Park S, Recher P. Transport signatures of Majorana bound states in superconducting hybrid structures: A minireview. European Physical Journal: Special Topics. 2020 Feb;229(4):593-620. Epub 2020 Feb 14. doi: 10.1140/epjst/e2019-900150-7
    Yerokhin VA, Müller RA, Surzhykov A, Micke P, Schmidt PO. Nonlinear isotope-shift effects in Be-like, B-like, and C-like argon. Physical Review A. 2020 Jan 6;101(1):012502. doi: 10.1103/PhysRevA.101.012502
    Hahn H, Zarantonello G, Schulte M, Bautista-Salvador A, Hammerer K, Ospelkaus C. Integrated 9Be+ multi-qubit gate device for the ion-trap quantum computer. npj Quantum information. 2019 Aug 16;5(1):70. Epub 2019 Aug 16. doi: 10.1038/s41534-019-0184-5, 10.15488/9283

TG Members

  • Involved Members and their Relevant Expertise
    Members Institution Relevant Expertise
    René Schwonnek, Leader LUH  
    Ludwig Krinner, Leader PTB Ion trapping, atomic physics, laboratory operation and automation, physical system modeling
    Christian Ospelkaus LUH / PTB Scalable Surface-Electrode Ion Traps; Integrated Microwave and RF Control Elements
    Jörg Schöbel TUBS Radio and Microwave Frequency Technologies
    Tobias Osborne LUH Tensor networks for many body localized systems
    Christoph Karrasch TUBS Tensor networks for many body localized systems
    Patrik Recher TUBS Theory of Emergent Correlated Quantum Matter; Josephson Junctions; Twisted Bilayer Graphene; Twisted-bilayer-graphene physics in ultracold atoms in optical potentials
    Wolfgang Nejdl LUH  
    Sándor Fekete TUBS  
    Peter Silvestrov TUBS Twisted Bilayer Graphene
    Wolfram Brenig TUBS strongly correlated electron systems, quantum transport, quantum critical systems, low dimensional quantum magnets
    Andrey Surzhykov PTB / TUBS Light-Matter Interfaces and Dynamics
    Peter Lemmens TUBS Propagation of Twisted Light through Media: New Possibilities for Information Transfer
    Timko Dubielzig LUH  
    René Schwonnek LUH  
    Tobias Schmale LUH Quantum algorithms; Quantum compilers; Quantum simulations
    Bence Temesi LUH Variational quantum algorithms; Quantum compilers
    Alakesh Baishya LUH Open quantum systems
    Nicolás Pulido LUH