Engineering Nanoparticles with Pure High-Order Multipole Scattering
- authored by
- Vladimir A. Zenin, Cesar E. Garcia-Ortiz, Andrey B. Evlyukhin, Yuanqing Yang, Radu Malureanu, Sergey M. Novikov, Victor Coello, Boris N. Chichkov, Sergey I. Bozhevolnyi, Andrei V. Lavrinenko, N. Asger Mortensen
- Abstract
The ability to control scattering directionality of nanoparticles is in high demand for many nanophotonic applications. One of the challenges is to design nanoparticles producing pure high-order multipole scattering (e.g., octopole, hexadecapole), whose contribution is usually negligible compared with strong low-order multipole scattering (i.e., dipole or quadrupole). Here we present an intuitive way to design such nanoparticles by introducing a void inside them. We show that both shell and ring nanostructures allow regimes with nearly pure high-order multipole scattering. Experimentally measured scattering diagrams from properly designed silicon rings at near-infrared wavelengths (∼800 nm) reproduce well scattering patterns of an electric octopole and magnetic hexadecapole. Our findings advance significantly inverse engineering of nanoparticles from given complex scattering characteristics, with possible applications in biosensing, optical metasurfaces, and quantum communications.
- Organisation(s)
-
Institute of Quantum Optics
QuantumFrontiers
PhoenixD: Photonics, Optics, and Engineering - Innovation Across Disciplines
- External Organisation(s)
-
Centro de Investigacion Cientifica y de Educacion Superior de Ensenada
Moscow Institute of Physics and Technology
Technical University of Denmark
Lebedev Physical Institute of the Russian Academy of Sciences (LPI RAS)
University of Southern Denmark
- Type
- Article
- Journal
- ACS PHOTONICS
- Volume
- 7
- Pages
- 1067-1075
- No. of pages
- 9
- ISSN
- 2330-4022
- Publication date
- 28.02.2020
- Publication status
- Published
- Peer reviewed
- Yes
- ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials, Biotechnology, Atomic and Molecular Physics, and Optics, Electrical and Electronic Engineering
- Electronic version(s)
-
http://arxiv.org/pdf/2001.03489 (Access:
Open)
https://doi.org/10.1021/acsphotonics.0c00078 (Access: Closed)