Strain control of exciton and trion spin-valley dynamics in monolayer transition metal dichalcogenides

authored by
Z. An, P. Soubelet, Y. Zhumagulov, M. Zopf, A. Delhomme, C. Qian, P. E. Faria Junior, J. Fabian, X. Cao, J. Yang, A. V. Stier, F. Ding, J. J. Finley
Abstract

The electron-hole exchange interaction is a fundamental mechanism that drives valley depolarization via intervalley exciton hopping in semiconductor multivalley systems. Here, we report polarization-resolved photoluminescence spectroscopy of neutral excitons and negatively charged trions in monolayer Formula Presented and Formula Presented under biaxial strain. We observe a marked enhancement (reduction) on the Formula Presented triplet trion valley polarization with compressive (tensile) strain while the trion in Formula Presented is unaffected. The origin of this effect is shown to be a strain-dependent tuning of the electron-hole exchange interaction. A combined analysis of the strain-dependent polarization degree using ab initio calculations and rate equations shows that strain affects intervalley scattering beyond what is expected from strain-dependent band-gap modulations. The results evidence how strain can be used to tune valley physics in energetically degenerate multivalley systems.

Organisation(s)
Institute of Solid State Physics
QuantumFrontiers
External Organisation(s)
Technical University of Munich (TUM)
University of Regensburg
Type
Letter
Journal
Physical Review B
Volume
108
ISSN
2469-9950
Publication date
20.07.2023
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Electronic, Optical and Magnetic Materials, Condensed Matter Physics
Electronic version(s)
https://doi.org/10.48550/arXiv.2303.15325 (Access: Open)
https://doi.org/10.1103/PhysRevB.108.L041404 (Access: Closed)