Transport properties of coupled Majorana bound states in the Coulomb blockade regime
- authored by
- Johan Ekström, Patrik Recher, Thomas L. Schmidt
- Abstract
Topologically protected qubits based on nanostructures hosting Majorana bound states (MBSs) hold great promise for fault-tolerant quantum computing. We study the transport properties of nanowire networks hosting MBSs with a focus on the effects of the charging energy and the overlap between neighboring MBSs in short mesoscopic samples. In particular, we investigate structures hosting four MBSs such as T junctions and Majorana boxes. Using a master equation in the Markovian approximation, we discuss the leading transport processes mediated by the MBSs. Single-electron tunneling and processes involving creation and annihilation of Cooper pairs dominate in the sequential-tunneling limit. In the cotunneling regime the charge in the MBSs is fixed and transport is governed by transitions via virtual intermediate states. Our results show that four-terminal measurements in the T junction and Majorana box geometries can be useful tools for the characterization of the properties of MBSs with finite overlaps and charging energy.
- External Organisation(s)
-
University of Luxembourg
Technische Universität Braunschweig
- Type
- Article
- Journal
- Physical Review B
- Volume
- 101
- ISSN
- 2469-9950
- Publication date
- 15.05.2020
- Publication status
- Published
- Peer reviewed
- Yes
- ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials, Condensed Matter Physics
- Electronic version(s)
-
https://doi.org/10.1103/PhysRevB.101.195420 (Access:
Unknown)