Directly addressable GaN-based nano-LED arrays: fabrication and electro-optical characterization

authored by
Daria D. Bezshlyakh, Hendrik Spende, Thomas Weimann, Peter Hinze, Steffen Bornemann, Jan Gülink, Joan Canals, Joan Daniel Prades, Angel Dieguez, Andreas Waag
Abstract

The rapid development of display technologies has raised interest in arrays of self-emitting, individually controlled light sources atthe microscale. Gallium nitride (GaN) micro-light-emitting diode (LED) technology meets this demand. However, the current technology is not suitable for the fabrication of arrays of submicron light sources that can be controlled individually. Our approach is based on nanoLED arrays that can directly address each array element and a self-pitch with dimensions below the wavelength of light. The design and fabrication processes are explained in detail and possess two geometries: a 6 × 6 array with 400 nm LEDs and a 2 × 32 line array with 200 nm LEDs. These nanoLEDs are developed as core elements of a novel on-chip super-resolution microscope. GaN technology, based on its physical properties, is an ideal platform for such nanoLEDs.

External Organisation(s)
Technische Universität Braunschweig
National Metrology Institute of Germany (PTB)
Universitat de Barcelona
Type
Article
Journal
Microsystems and Nanoengineering
Volume
6
Publication date
01.12.2020
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Atomic and Molecular Physics, and Optics, Materials Science (miscellaneous), Condensed Matter Physics, Industrial and Manufacturing Engineering, Electrical and Electronic Engineering
Electronic version(s)
https://doi.org/10.1038/s41378-020-00198-y (Access: Open)