Birkhoff theorem for Berwald-Finsler spacetimes

verfasst von
Nicoleta Voicu, Samira Cheraghchi, Christian Pfeifer
Abstract

Finsler spacetime geometry is a canonical extension of Riemannian spacetime geometry. It is based on a general length measure for curves (which does not necessarily arise from a spacetime metric) and it is used as an effective description of spacetime in quantum gravity phenomenology as well as in extensions of general relativity aiming to provide a geometric explanation of dark energy. A particular interesting subclass of Finsler spacetimes are those of Berwald type, for which the geometry is defined in terms of a canonical affine connection that uniquely generalizes the Levi-Civita connection of a spacetime metric. In this sense, Berwald Finsler spacetimes are Finsler spacetimes closest to pseudo-Riemannian ones. We prove that all Ricci-flat, spatially spherically symmetric Berwald spacetime structures are either pseudo-Riemannian (Lorentzian), or flat. This insight enables us to generalize the Jebsen-Birkhoff theorem to Berwald spacetimes.

Externe Organisation(en)
Zentrum für angewandte Raumfahrt­technologie und Mikro­gravitation (ZARM)
Typ
Artikel
Journal
Physical Review D
Band
108
ISSN
2470-0010
Publikationsdatum
27.11.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Kern- und Hochenergiephysik
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2306.07866 (Zugang: Offen)
https://doi.org/10.1103/PhysRevD.108.104060 (Zugang: Geschlossen)