Atomic source selection in space-borne gravitational wave detection

verfasst von
Sina Leon Loriani Fard, Dennis Schlippert, Christian Schubert, Sven Abend, Holger Ahlers, Wolfgang Ertmer, Jan Rudolph, Jason M. Hogan, Mark A. Kasevich, Ernst Maria Rasel, Naceur Gaaloul
Abstract

Recent proposals for space-borne gravitational wave detectors based on atom interferometry rely on extremely narrow single-photon transition lines as featured by alkaline-earth metals or atomic species with similar electronic configuration. Despite their similarity, these species differ in key parameters such as abundance of isotopes, atomic flux, density and temperature regimes, achievable expansion rates, density limitations set by interactions, as well as technological and operational requirements. In this study, we compare viable candidates for gravitational wave detection with atom interferometry, contrast the most promising atomic species, identify the relevant technological milestones and investigate potential source concepts towards a future gravitational wave detector in space.

Organisationseinheit(en)
QuantumFrontiers
QUEST Leibniz Forschungsschule
Institut für Quantenoptik
Quantum Atom Optics
SFB 1227: Designte Quantenzustände der Materie (DQ-mat)
Externe Organisation(en)
Stanford University
Typ
Artikel
Journal
New Journal of Physics
Band
21
Anzahl der Seiten
14
ISSN
1367-2630
Publikationsdatum
21.06.2019
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Physik und Astronomie (insg.)
Elektronische Version(en)
https://arxiv.org/abs/1812.11348 (Zugang: Offen)
https://doi.org/10.1088/1367-2630/ab22d0 (Zugang: Offen)