Integrated atomic quantum technologies in demanding environments: development and qualification of miniaturized optical setups and integration technologies for UHV and space operation
- verfasst von
- Marc Christ, Alexander Kassner, Robert Smol, Ahmad Bawamia, Hendrik Heine, Waldemar Herr, Achim Peters, Marc Christopher Wurz, Ernst Maria Rasel, Andreas Wicht, Markus Krutzik
- Abstract
Employing quantum sensors in field or in space implies demanding requirements on the used components and integration technologies. Within our work on compact atomic sensors, we develop miniaturized, ultra-stable optical setups for optical cooling and trapping of cold atomic gases on atom chips. Besides challenging demands on alignment precision and thermo-mechanical durability, we specifically address ultra-high vacuum (UHV) compatibility of our adhesive integration technology and the assembled optical components. A prototype of an UHV-compatible, crossed beam optical dipole trap at 1064 nm for application within a cold rubidium atomic quantum sensor currently in development at the Joint Lab Integrated Quantum Sensors at Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik is described. We describe the design and first qualification efforts on adhesive micro-integration technologies. These tests are conducted in application-relevant geometries and material combinations common for micro-integrated optical setups. Adhesive aging will be investigated by thermal cycling and radiation exposure. For vacuum compatibility testing, a versatile UHV testing system for samples up to 65×65mm2 footprint is currently being set up, enabling residual gas analysis, temperature cycling up to 200∘C and measurement of total gas rates down to expected 5×10-10mbarl/s at a base pressure of 10-11mbar, exceeding the common ASTM E595 test.
- Organisationseinheit(en)
-
Institut für Mikroproduktionstechnik
Institut für Quantenoptik
QuantumFrontiers
- Externe Organisation(en)
-
Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für Höchstfrequenztechnik (FBH)
Humboldt-Universität zu Berlin (HU Berlin)
- Typ
- Artikel
- Journal
- CEAS Space Journal
- Band
- 11
- Seiten
- 561-566
- Anzahl der Seiten
- 6
- ISSN
- 1868-2502
- Publikationsdatum
- 01.12.2019
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Luft- und Raumfahrttechnik, Astronomie und Planetologie
- Elektronische Version(en)
-
https://www.repo.uni-hannover.de/bitstream/123456789/10335/1/Christ2019.pdf (Zugang:
Offen)
https://doi.org/10.1007/s12567-019-00252-0 (Zugang: Geschlossen)