Single-element dual-interferometer for precision inertial sensing

verfasst von
Yichao Yang, Kohei Yamamoto, Victor Huarcaya, Christoph Vorndamme, Daniel Penkert, Germán Fernández Barranco, Thomas S. Schwarze, Moritz Mehmet, Juan Jose Esteban Delgado, Jianjun Jia, Gerhard Heinzel, Miguel Dovale Álvarez
Abstract

Tracking moving masses in several degrees of freedom with high precision and large dynamic range is a central aspect in many current and future gravitational physics experiments. Laser interferometers have been established as one of the tools of choice for such measurement schemes. Using sinusoidal phase modulation homodyne interferometry allows a drastic reduction of the complexity of the optical setup, a key limitation of multi-channel interferometry. By shifting the complexity of the setup to the signal processing stage, these methods enable devices with a size and weight not feasible using conventional techniques. In this paper we present the design of a novel sensor topology based on deep frequency modulation interferometry: the self-referenced single-element dual-interferometer (SEDI) inertial sensor, which takes simplification one step further by accommodating two interferometers in one optic. Using a combination of computer models and analytical methods we show that an inertial sensor with sub-picometer precision for frequencies above 10 mHz, in a package of a few cubic inches, seems feasible with our approach. Moreover we show that by combining two of these devices it is possible to reach sub-picometer precision down to 2 mHz. In combination with the given compactness, this makes the SEDI sensor a promising approach for applications in high precision inertial sensing for both next-generation space-based gravity missions employing drag-free control, and ground-based experiments employing inertial isolation systems with optical readout.

Organisationseinheit(en)
Institut für Gravitationsphysik
QuantumFrontiers
Externe Organisation(en)
CAS - Shanghai Institute of Technical Physics
Graduate University of Chinese Academy of Sciences
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Typ
Artikel
Journal
Sensors (Switzerland)
Band
20
Seiten
1-17
Anzahl der Seiten
17
ISSN
1424-8220
Publikationsdatum
03.09.2020
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Analytische Chemie, Biochemie, Atom- und Molekularphysik sowie Optik, Instrumentierung, Elektrotechnik und Elektronik
Elektronische Version(en)
https://doi.org/10.3390/s20174986 (Zugang: Offen)