ETpathfinder

a cryogenic testbed for interferometric gravitational-wave detectors

verfasst von
A. Utina, A. Amato, J. Arends, C. Arina, M. de Baar, M. Baars, P. Baer, N. van Bakel, W. Beaumont, A. Bertolini, M. van Beuzekom, S. Biersteker, A. Binetti, H. J.M. ter Brake, G. Bruno, J. Bryant, H. J. Bulten, L. Busch, P. Cebeci, C. Collette, S. Cooper, R. Cornelissen, P. Cuijpers, M. van Dael, S. Danilishin, D. Diksha, S. van Doesburg, M. Doets, R. Elsinga, V. Erends, J. van Erps, A. Freise, H. Frenaij, R. Garcia, M. Giesberts, S. Grohmann, H. Van Haevermaet, S. Heijnen, J. V. van Heijningen, E. Hennes, J. S. Hennig, M. Hennig, T. Hertog, S. Hild, H. D. Hoffmann, G. Hoft, M. Hopman, D. Hoyland, G. A. Iandolo, C. Ietswaard, R. Jamshidi, P. Jansweijer, A. Jones, P. Jones, N. Knust, G. Koekoek, X. Koroveshi, T. Kortekaas, A. N. Koushik, M. Kraan, M. van de Kraats, S. L. Kranzhoff, P. Kuijer, K. A. Kukkadapu, K. Lam, N. Letendre, P. Li, R. Limburg, F. Linde, J. P. Locquet, P. Loosen, H. Lueck, M. Martínez, A. Masserot, F. Meylahn, M. Molenaar, C. Mow-Lowry, J. Mundet, B. Munneke, L. van Nieuwland, E. Pacaud, D. Pascucci, S. Petit, Z. Van Ranst, G. Raskin, P. M. Recaman, N. van Remortel, L. Rolland, L. de Roo, E. Roose, J. C. Rosier, D. Ryckbosch, K. Schouteden, A. Sevrin, A. Sider, A. Singha, V. Spagnuolo, A. Stahl, J. Steinlechner, S. Steinlechner, B. Swinkels, N. Szilasi, M. Tacca, H. Thienpont, A. Vecchio, H. Verkooijen, C. H. Vermeer, M. Vervaeke, G. Visser, R. Walet, P. Werneke, C. Westhofen, B. Willke, A. Xhahi, T. Zhang
Abstract

The third-generation (3G) of gravitational wave observatories, such as the Einstein Telescope (ET) and Cosmic Explorer, aim for an improvement in sensitivity of at least a factor of ten over a wide frequency range compared to the current advanced detectors. In order to inform the design of the 3G detectors and to develop and qualify their subsystems, dedicated test facilities are required. ETpathfinder prototype uses full interferometer configurations and aims to provide a high sensitivity facility in a similar environment as ET. Along with the interferometry at 1550 nm and silicon test masses, ETpathfinder will focus on cryogenic technologies, lasers and optics at 2090 nm and advanced quantum-noise reduction schemes. This paper analyses the underpinning noise contributions and combines them into full noise budgets of the two initially targeted configurations: (1) operating with 1550 nm laser light and at a temperature of 18 K and (2) operating at 2090 nm wavelength and a temperature of 123 K.

Organisationseinheit(en)
Institut für Gravitationsphysik
Externe Organisation(en)
Maastricht University
Nationaal instituut voor subatomaire fysica (Nikhef)
Vrije Universiteit Amsterdam
Katholische Universität Löwen (UCL)
Eindhoven University of Technology (TU/e)
Fraunhofer-Institut für Lasertechnik (ILT)
Universiteit Antwerpen (UAntwerpen)
KU Leuven
University of Twente
University of Birmingham
Karlsruher Institut für Technologie (KIT)
Precision Mechatronics Laboratory (PML)
Vrije Universiteit Brussel
Institució Catalana de Recerca i Estudis Avançats (ICREA)
University of Western Australia
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Université Grenoble Alpes (UGA)
Universiteit Gent
Rheinisch-Westfälische Technische Hochschule Aachen (RWTH)
Typ
Artikel
Journal
Classical and Quantum Gravity
Band
39
ISSN
0264-9381
Publikationsdatum
26.09.2022
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Physik und Astronomie (sonstige)
Elektronische Version(en)
https://doi.org/10.1088/1361-6382/ac8fdb (Zugang: Offen)