Monte Carlo graph search for quantum circuit optimization

verfasst von
Bodo Rosenhahn, Tobias J. Osborne
Abstract

The building blocks of quantum algorithms and software are quantum gates, with the appropriate combination of quantum gates leading to a desired quantum circuit. Deep expert knowledge is necessary to discover effective combinations of quantum gates to achieve a desired quantum algorithm for solving a specific task. This is especially challenging for quantum machine learning and signal processing. For example, it is not trivial to design a quantum Fourier transform from scratch. This work proposes a quantum architecture search algorithm which is based on a Monte Carlo graph search and measures of importance sampling. It is applicable to the optimization of gate order for both discrete gates and gates containing continuous variables. Several numerical experiments demonstrate the applicability of the proposed method for the automatic discovery of quantum circuits.

Organisationseinheit(en)
QuantumFrontiers
Institut für Informationsverarbeitung
Forschungszentrum L3S
Institut für Theoretische Physik
Typ
Artikel
Journal
Physical Review A
Band
108
Anzahl der Seiten
10
ISSN
2469-9926
Publikationsdatum
19.12.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Atom- und Molekularphysik sowie Optik
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2307.07353 (Zugang: Offen)
https://doi.org/10.1103/PhysRevA.108.062615 (Zugang: Geschlossen)