Training deep quantum neural networks
- verfasst von
- Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias J. Osborne, Robert Salzmann, Daniel Scheiermann, Ramona Wolf
- Abstract
Neural networks enjoy widespread success in both research and industry and, with the advent of quantum technology, it is a crucial challenge to design quantum neural networks for fully quantum learning tasks. Here we propose a truly quantum analogue of classical neurons, which form quantum feedforward neural networks capable of universal quantum computation. We describe the efficient training of these networks using the fidelity as a cost function, providing both classical and efficient quantum implementations. Our method allows for fast optimisation with reduced memory requirements: the number of qudits required scales with only the width, allowing deep-network optimisation. We benchmark our proposal for the quantum task of learning an unknown unitary and find remarkable generalisation behaviour and a striking robustness to noisy training data.
- Organisationseinheit(en)
-
Institut für Theoretische Physik
QuantumFrontiers
SFB 1227: Designte Quantenzustände der Materie (DQ-mat)
- Externe Organisation(en)
-
University of Queensland
University of Cambridge
- Typ
- Artikel
- Journal
- Nature Communications
- Band
- 11
- Seiten
- 808
- ISSN
- 2041-1723
- Publikationsdatum
- 10.02.2020
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Chemie (insg.), Biochemie, Genetik und Molekularbiologie (insg.), Physik und Astronomie (insg.)
- Elektronische Version(en)
-
https://doi.org/10.1038/s41467-020-14454-2 (Zugang:
Offen)
https://doi.org/10.15488/9906 (Zugang: Offen)