Training deep quantum neural networks

verfasst von
Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias J. Osborne, Robert Salzmann, Daniel Scheiermann, Ramona Wolf
Abstract

Neural networks enjoy widespread success in both research and industry and, with the advent of quantum technology, it is a crucial challenge to design quantum neural networks for fully quantum learning tasks. Here we propose a truly quantum analogue of classical neurons, which form quantum feedforward neural networks capable of universal quantum computation. We describe the efficient training of these networks using the fidelity as a cost function, providing both classical and efficient quantum implementations. Our method allows for fast optimisation with reduced memory requirements: the number of qudits required scales with only the width, allowing deep-network optimisation. We benchmark our proposal for the quantum task of learning an unknown unitary and find remarkable generalisation behaviour and a striking robustness to noisy training data.

Organisationseinheit(en)
Institut für Theoretische Physik
QuantumFrontiers
SFB 1227: Designte Quantenzustände der Materie (DQ-mat)
Externe Organisation(en)
University of Queensland
University of Cambridge
Typ
Artikel
Journal
Nature Communications
Band
11
Seiten
808
ISSN
2041-1723
Publikationsdatum
10.02.2020
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Chemie (insg.), Biochemie, Genetik und Molekularbiologie (insg.), Physik und Astronomie (insg.)
Elektronische Version(en)
https://doi.org/10.1038/s41467-020-14454-2 (Zugang: Offen)
https://doi.org/10.15488/9906 (Zugang: Offen)