Quantum Variational Optimization of Ramsey Interferometry and Atomic Clocks

verfasst von
Raphael Kaubruegger, Denis V. Vasilyev, Marius Schulte, Klemens Hammerer, Peter Zoller
Abstract

We discuss quantum variational optimization of Ramsey interferometry with ensembles of \(N\) entangled atoms, and its application to atomic clocks based on a Bayesian approach to phase estimation. We identify best input states and generalized measurements within a variational approximation for the corresponding entangling and decoding quantum circuits. These circuits are built from basic quantum operations available for the particular sensor platform, such as one-axis twisting, or finite range interactions. Optimization is defined relative to a cost function, which in the present study is the Bayesian mean square error of the estimated phase for a given prior distribution, i.e. we optimize for a finite dynamic range of the interferometer. In analogous variational optimizations of optical atomic clocks, we use the Allan deviation for a given Ramsey interrogation time as the relevant cost function for the long-term instability. Remarkably, even low-depth quantum circuits yield excellent results that closely approach the fundamental quantum limits for optimal Ramsey interferometry and atomic clocks. The quantum metrological schemes identified here are readily applicable to atomic clocks based on optical lattices, tweezer arrays, or trapped ions.

Organisationseinheit(en)
Institut für Theoretische Physik
Institut für Gravitationsphysik
QuantumFrontiers
SFB 1227: Designte Quantenzustände der Materie (DQ-mat)
Externe Organisation(en)
Universität Innsbruck
Austrian Academy of Sciences
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Typ
Artikel
Journal
Physical Review X
Band
11
ISSN
2160-3308
Publikationsdatum
06.12.2021
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Physik und Astronomie (insg.)
Elektronische Version(en)
http://10.48550/arXiv.2102.05593 (Zugang: Offen)
https://doi.org/10.1103/PhysRevX.11.041045 (Zugang: Offen)