Progressive Self-Boosting Anapole-Enhanced Deep-Ultraviolet Third Harmonic during Few-Cycle Laser Radiation
- verfasst von
- Liping Shi, Andrey B. Evlyukhin, Carsten Reinhardt, Ihar Babushkin, Vladimir A. Zenin, Sven Burger, Radu Malureanu, Boris N. Chichkov, Uwe Morgner, Milutin Kovacev
- Abstract
Nanoantennas made of high-index semiconductors with a strong nonlinearity and supported optical Mie-type resonances offer a promising alternative platform for nonlinear nanophotonics. In this Letter, we employ an array of amorphous silicon nanodisks with varying diameters to produce a broadband deep-ultraviolet third harmonic of a few-cycle Ti:sapphire oscillator. Ultrashort light pulses efficiently deposit their energy at the center of the disks where the electric field is strongly amplified by the anapole states. This leads to a progressive material modification in an extreme multishot (>1010 pulses) and a rather low fluence (<10-3 J/cm2) regime, drastically differing from other known mechanisms, such as nonthermal plasma annealing or thermal melting-induced recrystallization. We suggest that the material modification is due to femtosecond laser-induced excitation of dangling bonds, which leads to a gradual boosting of the third harmonic conversion efficiency and broadening of its spectral bandwidth.
- Organisationseinheit(en)
-
Institut für Quantenoptik
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
QuantumFrontiers
- Externe Organisation(en)
-
Hochschule Bremen
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
University of Southern Denmark
Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Technical University of Denmark
- Typ
- Artikel
- Journal
- ACS PHOTONICS
- Band
- 7
- Seiten
- 1655-1661
- Anzahl der Seiten
- 7
- ISSN
- 2330-4022
- Publikationsdatum
- 15.07.2020
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Elektronische, optische und magnetische Materialien, Biotechnologie, Atom- und Molekularphysik sowie Optik, Elektrotechnik und Elektronik
- Elektronische Version(en)
-
https://doi.org/10.1021/acsphotonics.0c00753 (Zugang:
Geschlossen)